For glulams, the wet service factor would be used to determine which of the following adjusted design values? Select all that apply.
Blog
Determine the maximum actual deflection of the following bea…
Determine the maximum actual deflection of the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:wD = 280 lb/ftwLr = 150 lb/ftLoad combination:D + LrSpan:L = 12 ftMember size:4 x 12Stress grade and species:Select Structural Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360
A wood column is pin connected at its top and bottom. Determ…
A wood column is pin connected at its top and bottom. Determine the controlling slenderness ratio, le/d, for the column. Assume normal temperatures, no incising, and that all loads are downward. Ignore the weight of the member.Load:PD = 3,000 lbPL = 3,000 lbPLr = 4,500 lbPS = 4,000 lbPR = 2,000 lbPW = 500 lbPE = 0 lbLength:L = 8 ftMember size:4 x 6Stress grade and species:No. 2 Douglas Fir-LarchUnbraced length:lu = L = 8 ftMoisture content:MC < 19 percent
Determine the maximum bending moment in the following beam….
Determine the maximum bending moment in the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:PD = 600 lbPLr = 2,240 lbLoad combination:D + LrSpan:L = 14 ftMember size:4 x 12Stress grade and species:No. 1 Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360
For deflection calculations, the adjusted modulus of elastic…
For deflection calculations, the adjusted modulus of elasticity Ex’ for a hardwood glulam beam 14F-V1 with ASD load combination (D + 0.6W), under 16% moisture content, and a constant temperature of 135°F is _______.
Determine the ASD adjusted design bending strength, Fb’, for…
Determine the ASD adjusted design bending strength, Fb’, for the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:wD = 240 lb/ftwLr = 150 lb/ftLoad combination:D + LrSpan:L = 8 ftMember size:4 x 6Stress grade and species:No. 2 Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360
Determine the maximum actual deflection of the following bea…
Determine the maximum actual deflection of the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:wD = 220 lb/ftwLr = 150 lb/ftLoad combination:D + LrSpan:L = 9 ftMember size:4 x 8Stress grade and species:No. 2 Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360
Determine the maximum actual bending stress in the following…
Determine the maximum actual bending stress in the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:PD = 360 lbPLr = 800 lbLoad combination:D + LrSpan:L = 6 ftMember size:4 x 8Stress grade and species:Select Structural Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360
Determine the ASD adjusted minimum modulus of elasticity, Em…
Determine the ASD adjusted minimum modulus of elasticity, Emin’, for the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:PD = 440 lbPLr = 800 lbLoad combination:D + LrSpan:L = 6 ftMember size:4 x 8Stress grade and species:No. 1 & Better Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360
Determine the maximum bending moment in the following beam….
Determine the maximum bending moment in the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:wD = 120 lb/ftwLr = 270 lb/ftLoad combination:D + LrSpan:L = 6 ftMember size:4 x 14Stress grade and species:No. 1 & Better Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC < 19 percentLive load deflection limit:Allow. Δ ≤ L/360