Determine the maximum bending moment in the following beam….

Determine the maximum bending moment in the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:PD = 560 lbPLr = 1,440 lbLoad combination:D + LrSpan:L = 14 ftMember size:4 x 6Stress grade and species:No. 1 & Better Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC < 19 percentLive load deflection limit:Allow. Δ ≤ L/360

Determine the maximum actual deflection of the following bea…

Determine the maximum actual deflection of the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:PD = 200 lbPLr = 1,760 lbLoad combination:D + LrSpan:L = 8 ftMember size:4 x 10Stress grade and species:No. 2 Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360

Determine the maximum actual bending stress in the following…

Determine the maximum actual bending stress in the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:wD = 220 lb/ftwLr = 270 lb/ftLoad combination:D + LrSpan:L = 10 ftMember size:4 x 14Stress grade and species:No. 1 Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360

Determine the ASD adjusted design bending strength, Fb’, for…

Determine the ASD adjusted design bending strength, Fb’, for the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:wD = 280 lb/ftwLr = 150 lb/ftLoad combination:D + LrSpan:L = 8 ftMember size:4 x 8Stress grade and species:Select Structural Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360

Determine the ASD adjusted modulus of elasticity, E’, for th…

Determine the ASD adjusted modulus of elasticity, E’, for the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:wD = 280 lb/ftwLr = 330 lb/ftLoad combination:D + LrSpan:L = 9 ftMember size:4 x 12Stress grade and species:No. 1 & Better Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC < 19 percentLive load deflection limit:Allow. Δ ≤ L/360

Determine the maximum actual deflection of the following bea…

Determine the maximum actual deflection of the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:PD = 200 lbPLr = 1,920 lbLoad combination:D + LrSpan:L = 6 ftMember size:4 x 8Stress grade and species:No. 1 Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC < 19 percentLive load deflection limit:Allow. Δ ≤ L/360

Determine the ASD adjusted modulus of elasticity, E’, for th…

Determine the ASD adjusted modulus of elasticity, E’, for the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:PD = 600 lbPLr = 1,920 lbLoad combination:D + LrSpan:L = 12 ftMember size:4 x 14Stress grade and species:No. 1 & Better Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360

Determine the maximum actual bending stress in the following…

Determine the maximum actual bending stress in the following beam. Assume normal temperatures, bending about the strong axis, and no incising. Ignore the weight of the beam.Load:PD = 520 lbPLr = 2,400 lbLoad combination:D + LrSpan:L = 8 ftMember size:4 x 14Stress grade and species:No. 1 Douglas Fir-LarchUnbraced length:lu = 0Moisture content:MC > 19 percentLive load deflection limit:Allow. Δ ≤ L/360