Consider the following code to identify outliers:1)from skle…

Consider the following code to identify outliers:1)from sklearn.ensemble import IsolationForest 2)iforest = IsolationForest(random_state=0, contamination=0.05).fit(x) 3)y_iforest = iforest.predict(x) 4)idx = (y_iforest==1) 5)x_no_outliers = x[idx, :] 6)y_no_outliers = y[idx] 7)print(f’Total Number of Observations: {len(y)}’) 8)print(f’Total Number of Outliers: {len(y) – len(y_no_outliers)}’)Which line has the label without outliers?

Consider the following code that we used to classify the inc…

Consider the following code that we used to classify the income of adults in the US.inputs = tf.keras.layers.Dense(units=32, activation=’relu’, input_shape=[len(features.columns)]) hidden = tf.keras.layers.Dense(units=32, activation=’relu’) outputs = tf.keras.layers.Dense(units=2, activation=TO BE FILLED) model = tf.keras.Sequential([inputs, hidden, outputs]) loss = ‘sparse_categorical_crossentropy’ optimizer = tf.keras.optimizers.RMSprop(0.001) model.compile(loss=loss, optimizer=optimizer, metrics=[‘accuracy’])What was the activation function used on the output layer in this deep neural network?